
1 

 

 Gaming in Air Pollution Data? Lessons from China 
 

Yuyu Chen 

Peking University 

 

Ginger Zhe Jin 

University of Maryland & NBER 

 

Naresh Kumar 

University of Miami 

 

Guang Shi 

Development Research Center of the State Council of China 

 

Abstract 

 

Protecting the environment during economic growth is a challenge facing 

every country. This paper focuses on two regulatory measures that China has 

adopted to incentivize air quality improvement: publishing a daily air pollution 

index (API) for major cities since 2000 and linking the API to performance 

evaluations of local governments. In particular, China defines a day with an API 

at or below 100 as a blue sky day. Starting in 2003, a city with at least 80% blue 

sky days in a calendar year (among other criteria) qualified for the “national 

environmental protection model city” award. This cutoff was increased to 85% in 

2007.  

Using officially reported API data from 37 large cities during 2000-2009, 

we find a significant discontinuity at the threshold of 100 and this discontinuity is 

of a greater magnitude after 2003. Moreover, we find that the model cities were 

less likely to report API right above 100 when they were close to the targeted blue 

sky days in the fourth quarter of the year when or before they won the model city 

award. That being said, we also find significant correlation of API with two 

alternative measures of air pollution – namely visibility as reported by the China 

Meteorological Administration (CMA) and Aerosol Optical Depth (AOD), 

corrected for meteorological conditions, from NASA satellites. The discontinuity 

around 100 suggests that count of blue sky days could have been subject to data 

manipulation; nevertheless, API does contain useful information about air 

pollution. 
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1. Introduction 

Protecting the environment during economic growth is a challenge facing 

every country. Because private sectors may not fully internalize the environmental 

consequences of their activity, environmental protectionists have called for 

government regulation. Existing research has examined the effect of 

environmental regulations on firm behavior
1
, environmental measures

2
, and health 

outcomes
3
, but few studies look at the policies that motivate local governments to 

reduce pollution.
4
 Nevertheless, a great number of international treaties have 

been established, with the assumption that each targeted government, facing the 

incentives specified in an international treaty, can effectively reduce pollution in 

or near its territory. Unfortunately, any policy that motivates local governments to 

reduce pollution can also motivate them to report better outcomes on paper, 

especially if it is more costly to make actual improvements, if gaming is difficult 

to detect, and if enforcement relies on self-reporting due to a lack of 

disaggregated objective data. 

China provides a unique opportunity to study local government incentives 

in environmental protection. While China has enjoyed steady GDP growth for the 

past 30 years, 16 of the world’s top 20 most polluted cities were located in China 

as of 2007.
5
 Given the regional decentralized authoritarian (RDA) regime in 

China, Xu (2011) argues that local government officials have an incentive to 

sacrifice environmental protection in order to boost local GDP growth. This is 

because local government leaders are appointed by the central government based 

on local performance, and GDP growth is easier to measure than environmental 

conditions. To be fair, the central government is aware of the problem and has 

                         
1
 Among others, Henderson (1996), Becker and Henderson (2000), Greenstone (2002), and List et 

al. (2003) examine the effects of environmental regulations on firm entry, exit, and size change in 

the US. A number of other studies focus on the effect of environmental regulations on trade flow, 

capital flow, and international pollution havens, for example, Dean, Lovely and Wang (2009), 

Ederington, Levinson and Minier (2005), Keller and Levinson (2002), Wheeler (2004), and Zeng 

and Zhao (2009). 
2
 For example, Greenstone (2004) studies the impact of the US Clean Air Act on sulfur dioxide, 

Davis (2008) studies the effect of driving restrictions on air quality in Mexico City, and Chen et al. 

(2011) study the effect of environmental measures adopted in the name of the 2008 Olympic 

Games on Beijing’s air quality.  
3
 For example, Chay and Greenstone (2003), Currie and Neidell (2005), and Currie, Neidell and 

Schmieder (2009) study the impact of air pollution on infant health and mortality; Chay, Dobkin 

and Greenstone (2003) examine the effect of the 1970 Clean Air Act on adult mortality.  
4At the country level, Congleton (1992) and Murdoch and Sandler (1997) show that democratic 

countries are more likely to support and enforce chlorofluorocarbon emissions control under the 

Montreal Protocol. See Oats and Portney (2003) for a review of the political economy of 

environmental policy. 
5
http://www.cbsnews.com/stories/2007/06/06/eveningnews/main2895653.shtml, citing the World 

Bank's "The Little Green Data Book" (May 2007, ISBN 0-8213-6967-9). 

http://www.cbsnews.com/stories/2007/06/06/eveningnews/main2895653.shtml
http://siteresources.worldbank.org/INTDATASTA/64199955-1178226923002/21322619/LGDB2007.pdf
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incorporated some environmental measures into the performance evaluation 

criteria. Lessons learned from these environmental incentives are likely to have 

important implications for crafting other domestic and international policies that 

target local governments for environmental protection. 

This paper focuses on two regulatory measures that China has adopted to 

incentivize local governments to improve air quality: one is publishing daily air 

pollution index (API) for 86 cities since 2000; the other is linking the API to 

performance evaluation of local governments. In particular, China defines a day 

with an API at or below 100 as a blue sky day. Starting in 2003, a city with at 

least 80% blue sky days in a calendar year (among other criteria) qualified for the 

“national environmental protection model city” award. This API cutoff for a 

model city increased further to 85% in 2007. While these incentive policies were 

adopted to reduce air pollution, they also provided incentives to game the API 

data, as the API data are reported by local governments and misreporting is less 

costly than actual improvement of air quality. 

Using the officially reported API data from 37 large cities during 2000-

2009, we show that there is a significant discontinuity at the threshold of 100, 

despite the fact that API is calculated as a city-day average for multiple pollutants 

across multiple monitoring stations. This discontinuity is of a greater magnitude 

after 2003, and model cities are less likely to report API right above 100 when 

they face more pressure to reach the cutoff by the end of the year in which and the 

year before they won the award. That being said, we also find significant and 

stable correlation between the API with two alternative measures of air pollution: 

visibility (reported by the China Meteorological Administration, CMA) and 

Aerosol Optical Depth (AOD) derived from the NASA satellites. These findings 

suggest that the count of blue sky days may be subject to data manipulation, but 

the reported API does contain useful information about air pollution. 

We also show that, controlling for weather, day fixed effects, and city-

specific factors, there is no statistically significant improvement in the API, 

visibility, or the AOD immediately before or after a city won the model city 

award. This implies that model city status is not awarded to acknowledge 

significant air quality improvement within a city, which could be explained by 

either the model city policy providing little incentive to improve air quality or the 

policy encouraging every city to improve on similar scales regardless of model 

city award status. Both are consistent with the fact that air quality is only a small 

part of model city award evaluation and the model city award is only one of many 

incentive tools facing local governments.  

The rest of the paper is organized as follows: Section 2 describes data and 

policies on blue sky days and model city evaluation. Section 3 reviews the 

literature. Section 4 presents evidence of the discontinuity of the API, the 

particulate matter inferred from the API (PM10), visibility, and the AOD. Section 5 
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examines the extent to which the pressure to achieve the model-city goal of blue 

sky days has affected the reported API and PM10. Section 6 offers a broader study 

of whether various measures of air quality have improved immediately before or 

after a city won the model city award. Section 7 checks the correlations between 

the API, visibility, and AOD in light of the API discontinuity around the blue sky 

threshold. Section 8 concludes. 

 

2 Data and Background 

China has been known for poor air quality since the 1990s. The 1996 

national standards on sulfur dioxide (SO2), nitrogen dioxide (NO2), total 

suspended particles (TSP), and particulate matter with an aerodynamic diameter 

of 10 microns or smaller (PM10) were 2-7 times higher than the standards 

established by the World Health Organization (UNEP 2009). An amendment in 

2000 further weakened the Chinese standards for NO2 and ozone. Even so, the 

relatively liberal standards are hard to enforce in China, partly because each local 

environment protection agency, although a branch of the Ministry of 

Environmental Protection (MEP), is also part of the local government and thus 

subject to local governance. 

 

2.1 API  

Among other environmental protection efforts, the MEP started publishing 

a daily air pollution index (API) for 86 cities in June 2000. These cities cover 

most median- and large-size cities of China, including all the provincial-level 

municipalities and all provincial capitals. For each city, the MEP aggregates the 

measured intensities of NO2, SO2, and PM10 (monitored at sparsely distributed 

stations with unknown locations in the city) into a daily API ranging from 0 to 

500.
6
 Specifically, suppose a city has M stations and each station monitors NO2, 

SO2, and PM10 N times each day.
7
 The MEP first computes the daily average of 

all the MxN measures for each pollutant and then translates the daily mean 

intensity into a pollutant-specific API according to linear spines with cutoff points 

as defined in Table 1.
8
 The overall API is the maximum of all pollutant-specific 

                         
6
According to Andrews (2008) and Jiang et al. (2004), API was calculated based on TSP, NO2, 

SO2, in 1998-2000. A new policy starting in June 2000 changed API calculation to PM10, NO2, and 

SO2. MEP monitors the intensity of CO but does not include it in the current API calculation 

because the calculation formula was set ten years ago and at that time the vehicle volume in China 

was very low. MEP is considering adding CO and other pollutants for future API. Source: 

http://news.163.com/09/0312/11/5470SBA9000120GU.html 
7
 The MEP stipulates the number of monitoring stations according to city population and the size 

of the established area. For a large city like Beijing, one monitoring station is required for every 

25-30 km
2 
and the total number of stations must be at least 8.  

8
 For example, if the daily mean of PM10 is 220 μg/m

3
, the corresponding API of PM10 is (220-

150)/(350-150)*(200-100)+100 = 135.  

http://news.163.com/09/0312/11/5470SBA9000120GU.html
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APIs. If that maximum is above 500, the overall API is capped at 500. The MEP 

partitions the API into five groups: 0-50, 51-100, 101-200, 201-300, and 301-500, 

representing “excellent,” “good,” “slightly polluted,” “moderately polluted,” and 

“heavily polluted” air quality, respectively. The MEP also reports the category of 

the dominant pollutant(s) if the API is above 50. Over our analysis sample (from 

06/06/2000 to 10/31/2009 for 37 cities), 72.9% of API observations reported PM10 

as the main pollutant, 0.35% reported NO2, and 6.85% reported SO2. The 

remaining 19.9% have an API below 50.  

 
Table 1: MEP cutoff points for different levels of API 

 

API PollutantDensity(μg/m
3） Air 

quality 

level 

Air Quality 

condition 

Notes of health effects 

PM10 SO2 NO2 

500 600 2620 940 V Heavy 

pollution 

Exercise endurance of the 

healthy people decreases; 

some will have strong 

symptoms. Some diseases 

will appear. 

400 500 2100 750 

300 420 1600 565 IV Moderate 

pollution 

The symptoms of the 

patients with cardiac and 

lung diseases will be 

aggravated remarkably. 

Healthy people will 

experience a drop in 

endurance and increased 

symptoms. 

200 350 250 150 III Slightly 

polluted 

The symptoms of the 

susceptible are slightly 

aggravated, while healthy 

people will have stimulated 

symptoms. 

100 150 150 100 II Good Daily activity will not be 

affected. 

50 50 50 50 I Excellent Daily activity will not be 

affected. 

Source: The first four columns are taken from the MEP website. The last three columns are copied 

from Table 2.2 of UNEP (2009).  

 

 Although the API data are disclosed on the MEP website, they are 

collected and reported by local MEP branches. At the frequency of city-day, it is 

virtually impossible for the central MEP to verify every number reported by a 

local branch. To the extent that local MEP officials are subject to local 

governance, the reliability of the API data may depend on the data collection 

method (defined by the MEP), as well as local political incentive to report a good 

number to the central government. 
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2.2 Blue Sky Day  

A crude categorization of air pollution refers to a day with an API at or 

below 100 as a “blue sky” day. Both national and local environmental authorities 

have used the number of blue sky days in a year as a measure of air pollution. For 

example, Beijing claims steady air quality improvement because the number of 

blue sky days increased from 274 in 2008
9
 to 285 in 2009

10
and 286 in 2010.

11
 

However, in our analysis sample, the average API of all blue sky days increased 

from 65.62 in 2008 to 71.11 in 2009 (up to 10/31/2009). This finding implies that 

continuous API and binary count of blue sky days can paint different pictures of 

air quality. Nevertheless, the number of blue sky days is visible in mass media and 

its improvement is often cited by local governments as a political goal at the 

beginning of a calendar year and an achievement at the end of the year.
12

 The 

phrase “blue sky day” has also been challenged by a local resident of Beijing, 

who photographed the sky each day and found that the number of days with a real 

blue sky was 180 instead of 285 in 2009.
13

 While the naked eye and reported data 

differ in definition, this incident reflects the public attention paid to blue sky days. 

 

2.3 Model city policy  

As early as 1997, the central government of China started to evaluate 

whether a city was qualified for a “national environmental protection model city” 

award based on environmental quality and economic measures. These measures 

cover air pollution, water quality, noise, percent of green land, management of 

industrial and residential waste, consumer satisfaction with the environment, 

municipal institutions that focus on environmental protection, GDP per capita, 

GDP growth rate, population growth rate, energy consumption, and water 

consumption.
14

 While the API has always been the only measure of air quality in 

the evaluation criteria, its use in model city evaluation is vague. The ambiguity 

was reduced over time, as a 2003 regulation specified that a model city must have 

                         
9
 See news report at http://news.qq.com/a/20081231/001928.html (reported on 12/31/ 2008, 

accessed on 02/10/2012). 
10

 See news report at http://news.qq.com/a/20091231/001311.html (reported on 12/31/2009, 

accessed on 02/10/2012). 
11

 See news report at http://news.xinhuanet.com/fortune/2011-01/01/c_13672919.htm (reported on 

1/1/2011, accessed on 02/10/2012).  
12

 See news report at http://news.163.com/11/1107/01/7IyI1FB100014AED.html (reported on 

07/11/2011, accessed on 02/10/2012). 
13

 See news report at http://news.xinhuanet.com/society/2010-10/27/c_12704483.htm (reported on 

10/27/2010, accessed on 02/10/2012). 
14 We could not find any MEP documents that specify the numerical weight of each model-city 

evaluation measure, nor does the MEP clarify a sufficient condition for the model-city award. 

Every condition described in the MEP documents appears to be a necessary condition.  

http://news.qq.com/a/20081231/001928.html
http://news.qq.com/a/20091231/001311.html
http://news.xinhuanet.com/fortune/2011-01/01/c_13672919.htm
http://news.163.com/11/1107/01/7IyI1FB100014AED.html
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over 80% of days in a calendar year with an API below 100 and this cutoff was 

increased to 85% in 2007.
15

 

It is worth noting that participation in the model city evaluation is 

voluntary. We do not observe which cities applied for the award in a given year, 

and we assume that every city that satisfies the explicit criteria apply. Upon 

application, the central government’s evaluation committee will visit the city in 

person and announce the winner(s) afterwards.
16

 Among the 37 big cities for 

which we have complete API and visibility data from 6/5/2000 to 10/31/2009, 

nine have won the model city award in our sample period: Qingdao (2000), 

Hangzhou (2001), Changchun (2002), Nanjing (2003), Fuzhou (2004), Shenyang 

(2004), Nantong (2006), Tianjin (2006) and Guangzhou (2007). Another six cities 

won the award before the start of our sample: Shenzhen (1997), Dalian (1997), 

Xiamen (1997), Haikou (1999), Shantou (1999) and Suzhou (1999). Because we 

do not know the exact timing of award announcement, we assume that the 

evaluation is conducted based on the data for the year of award and one year 

before the award.
17

 

The model city award is semi-permanent. According to the MEP 

regulation, a city that has won the model city award is subject to reexamination 

every three years; if it fails the reexamination, it has two years to correct the 

problem; if underperformance remains after the correction period, the award will 

be revoked. In reality, some reexaminations were conducted more than three years 

after the initial award, and some cities were even exempted from reexamination.
18

 

To our best knowledge, no model city award has ever been revoked. This suggests 

that it is more difficult to earn a model city award than it is to keep it. It may also 

                         
15

 The 1997 regulation was a pilot program that specified the criterion of air quality as 

“API<100.” The 2003 regulation clarified the air quality criterion as the percentage of days with 

API<100 higher than 80%. The regulation was issued on 11/19/2002 and made effective on 

7/1/2003 (http://www.mep.gov.cn/gkml/zj/bgt/200910/t20091022_173806.htm). The 2007 

regulation (effective as of 1/1/2007) stipulated that the percentage of days of API<=100 be higher 

than 85%. Although the 1997 and 2003 regulations specified API<100 instead of API<=100, we 

believe the actual implementation was always API<=100 because both definitions of blue sky days 

and the “good” API category use 100 as the upper bound. This assumption is also confirmed in the 

below discontinuity study and a local MEP branch website in Xiamen. 
16 We could not find any MEP document that provides details on the specific timing of the model 

city award. 
17

In one particular application, we observe the applicant citing environmental and economic 

measures in the past two years. 
18

For example, Yangzhou earned the award in 2002 but was re-examined in 2006 

(http://www.mep.gov.cn/gkml/zj/bgth/200910/t20091022_174312.htm); Changchun earned the 

award in 2002, but was re-examined in 2008 

(http://www.mep.gov.cn/gkml/zj/bgth/200910/t20091022_174443.htm). According 

to http://wfs.mep.gov.cn/mfcs/mfcsxx/gldt/200503/t20050327_65797.htm, some model cities can 

be exempted from re-examination. 

http://www.mep.gov.cn/gkml/zj/bgt/200910/t20091022_173806.htm
https://exch.mail.umd.edu/owa/redir.aspx?C=562842f84f30440cbdddead6f8ebab2b&URL=http%3a%2f%2fwww.mep.gov.cn%2fgkml%2fzj%2fbgth%2f200910%2ft20091022_174312.htm
https://exch.mail.umd.edu/owa/redir.aspx?C=562842f84f30440cbdddead6f8ebab2b&URL=http%3a%2f%2fwww.mep.gov.cn%2fgkml%2fzj%2fbgth%2f200910%2ft20091022_174443.htm
https://exch.mail.umd.edu/owa/redir.aspx?C=562842f84f30440cbdddead6f8ebab2b&URL=http%3a%2f%2fwfs.mep.gov.cn%2fmfcs%2fmfcsxx%2fgldt%2f200503%2ft20050327_65797.htm
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reduce incentives for both manipulation and genuine improvements in air quality 

after winning the model city award, a hypothesis we will examine in Section 6. 

 

 

2.4 Visibility 
In addition to the API, we employ two additional proxies for air pollution. 

The first proxy is visibility, defined as the greatest distance at which an observer 

with normal eyesight can discern a dark object from the horizontal sky. We 

obtained daily visibility data from the China Meteorological Administration 

(CMA), along with local temperature, precipitation, barometric pressure, 

sunshine, humidity, and wind velocity as reported at 2PM each day at a fixed point 

in each city. Researchers have shown that API and visibility are negatively 

correlated (Che et al. 2006, Fan and Li 2008), and visibility is considered to be an 

important predictor of fine particulates (Ozkaynak et al. 1985, Huang et al. 

2009).
19

 Like the API, visibility is reported by government officials, but it is not 

disclosed to the public (we purchased the data from CMA) and not used in the 

evaluation of government officials, and therefore is subject to fewer gaming 

incentives.  

 

2.5 AOD 
The second proxy for air pollution is the daily 10km AOD data (Level 2, 

collection 5.0) retrieved from Moderate Resolution Imaging Spectroradiometer 

(MODIS) aboard Terra and Aqua satellites (NASA 2010). The extraction 

procedure is available elsewhere (Chu et al. 2003; Levy et al. 2007a, 2007b). 

Imagine that radiation travels from a satellite to the earth’s surface. By definition, 

the AOD captures the amount of radiation absorbed, reflected, and scattered due 

to the presence of solid and liquid particulates suspended in the atmospheric 

column (Kaufman, Gobron et al. 2002; Kaufman, Tanre et al. 2002). While the 

AOD is potentially available everywhere at the satellite crossing time (~10:30am 

and ~1:30pm of Beijing time), it is sensitive to the point- and time-specific 

weather and available only for days with less than 10% cloud cover. Despite this 

fact, researchers have shown that the AOD, corrected for meteorological 

conditions, can predict air quality (Gupta et al. 2006; Kumar 2010; Kumar et al. 

2011). Focusing on Delhi and Kanpur in India and Cleveland in the US, Kumar et 

al. (2009; 2011) demonstrate how the AOD can be converted to PM10 estimates. 

They develop an empirical relationship between in situ measurements of PM10 and 

the AOD. They conclude that AOD captured 70% of the variations in the PM10 

(monitored on the surface) after controlling for meteorological conditions and 

                         
19

 Fine particulates (PM2.5) are defined as particulates less than 2.5µm in aerodynamic diameter. 
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seasonality. Since the in situ PM10 data were not available for Chinese cities 

during our sample period, this paper utilizes the AOD data directly (corrected for 

meteorological conditions and spatiotemporal structure).  

The comparison of API, visibility, and AOD data is far from perfect. Even 

if the reported dominant pollutant of the API is PM10, visibility and AOD data 

could vary with the composition of particle size. According to Brook, Dann and 

Burnett (1997), Canadian data suggest that PM2.5 accounted for 49% of the PM10, 

and PM10 accounted for 44% of total suspended particles. The composition of 

suspended particles is likely coarser in developing countries: Kumar and Foster 

(2009) and Kumar, Chu and Foster (2007) show that PM2.5 accounts for only 24% 

of the PM10 in Delhi, India. Moreover, all particulate matter in the atmosphere 

could affect the AOD, whereas visibility and the API are more related to 

particulate matter on the ground. The third difference is due to the mismatch in 

the spatial resolution of AOD and API. Although we know the centroid latitude 

and longitude of each AOD data point (which represents ~10km at the satellite 

crossing path), we do not know the exact location of each API or visibility 

monitoring station.
20

 

 

2.6 Analysis Sample 
Conditional on having non-break API and visibility data, our analysis 

consists of 37 cities, which include major provincial-level municipalities, such as 

Beijing, Tianjin, Shanghai and Chongqing, as well as 24 provincial capitals.
21

 

The API, visibility, and other meteorological data from the CMA are 

reported by city-day, covering 126,688 observations from 6/5/2000 to 10/31/2009. 

For the 37 cities in our sample, we retrieved 2,614,734 valid 10km AOD 

observations from 2/25/2000 to 12/31/2009. Of all the 3,598 calendar days in the 

sample period, only 49.9% had valid AOD observations due to gaps in the data.
22

 

On average, we have 39.36 data points of the AOD per city-day.  

To control for time-specific meteorological conditions at the observation 

time of the AOD, we acquired hourly global surface meteorological data from the 

monitoring stations in and around the selected cities. The details on these data are 

                         
20

 Andrews (2008) and Viard and Fu (2011) used station-level PM10 data for Beijing. We are not 

aware of station-level data available for all the 37 cities in our sample from 2000 to 2009. 
21

 Although the MEP reports API for 86 cities and the CMA visibility data cover 69 cities, only 42 

cities have API data in 2000 and the visibility data are incomplete for some cities between 1993 

and 2009. For an unknown reason, the API data are missing on June 4, 2008 for all cities. So the 

“non-break” criterion means having valid data every city-day from the beginning to the end of our 

data sample, ignoring the missing data on June 4, 2008. All the discontinuity analysis in Section 4 

is robust on the full sample of 86-city API data. 
22

 For 37 cities from February 25, 2000 to December 31, 2009, there are totally 133126 city/day 

cells. In our data, there are actually 66427 city/day cells with valid AOD observations, which 

amounts to 49.9%. 
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available elsewhere (NCDC 2007). These data were collocated with the AOD data 

within a one-hour time interval of AOD time on a given day. This means we 

assigned the same value of meteorological conditions (from the closest station) to 

all AOD values in a given city on a given day. The gaps in meteorological data 

and AOD data resulted in missing values in 6% of the sample. Therefore, 

meteorological conditions were imputed for days when AOD was available.
23

 

To facilitate the comparison between API, visibility, and AOD data, our 

AOD analysis focuses on the city-day average of the AOD conditional on AOD 

availability. This resulted in 63,948 city-day observations of AOD, of which 

50,672 city-days reported PM10 as the dominant pollutant. 

 

3 Literature and potential ways to game the API 

 We are not the first to question the reliability of API data. Using data for 

Beijing only, Andrews (2008) expresses concern that Beijing may have 

manipulated the official API report because (1) Beijing has relocated monitoring 

stations over time; (2) the 2000 MEP regulation switched one component of API 

from TSP to PM10, and weakened the limits of nitrogen oxides and ozone; and (3) 

the number of days with an API between 96 and 100 is significantly higher than 

the number of days with an API between 101 and 105. The article compares 

reported API with detailed station-level PM10 data, showing discontinuity of API 

and PM10 data, but provides no formal statistical test for the discontinuity. Nor 

does it control for weather and other factors that may influence API. Guinot 

(2008) suggests that it is not uncommon to add monitoring stations with economic 

and urban growth, and the uncertainty in the API metrics may range from 15% to 

25% due to measurement errors in pollutant intensities. This casual debate 

motivates us to examine the discontinuity of API in a more scientific way. Our 

study also expands from Beijing to 37 big cities, and pays more attention to the 

incentive of misreport from local governments.  

A few other studies have used alternative measures of air pollution in 

addition to the official API. In February 2009, United Nations published a 

summary report on the 2008 Beijing Olympic Games, with an entire chapter 

devoted to air quality (UNEP 2009). This report uses the API and pollution 

intensity data from the Beijing Environmental Protection Bureau (EPB), plus a 

brief discussion of coarse resolution AOD data (i.e., 100km instead of the10km 

AOD used in our study). The report concludes that Beijing’s air quality improved 

from before to during to shortly after the 2008 Games. Chen et al. (2011) 

                         
23

When meteorological variables are missing, we usually miss some but not all of them. Suppose 

we only miss the meteorological variable K for date t in city c. Conditional on the days when K is 

available, we regress K on the other meteorological variables and continuous time (days since 

2000). We then impute K on date t, using these regression coefficients and other meteorological 

variables that are available on date t. 
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investigate the impact of the 2008 Games on air quality using the same API and 

AOD data as in this paper. After controlling for city-specific attributes and a 

nationwide trend toward better air, they find that the air-cleaning actions adopted 

in the name of the 2008 Olympic Games lead to real but temporary improvement 

in the air quality of Beijing. This result is supported by both API and AOD data, 

suggesting that the API contains useful information about air pollution. However, 

this conclusion does not rule out gaming of the API given the imperfect 

comparison between API and AOD data. Viard and Fu (2011) use both API and 

station-level PM10 data of Beijing to investigate the impact of traffic restriction on 

air quality. They find that traffic restriction leads to a 19% decline of API during 

every-other-day restriction and a 7% decline during one-day-per-week restriction. 

Wang et al. (2009) collected their own PM10 and PM2.5 data at Peking 

University between 7/28/2008 and 10/7/2008. They find a significant correlation 

between self-measured and published PM10, but the absolute level of their self-

measure is 30% higher. This finding triggers concerns that the official API may be 

subject to manipulation, but the discrepancy may be attributed to sampling and 

methodological differences (Tang et al. 2009, Yao et al. 2009, Simorich 

2009).Wang et al. (2009) also find that meteorological conditions such as wind, 

precipitation, and humidity account for 40% of the total variation in PM10. This is 

why we need daily meteorological data for every city in our sample.  

Any systematic study of gaming needs to ask “why” and “how.” The 

incentive to improve the reported API is rooted in the unique structure of the 

Chinese political system. As described in Xu (2011), China is characterized by a 

combination of political centralization and economic regional decentralization: 

the central government controls the appointment, promotion, and demotion of 

local political leaders, while leaving to subnational governments (provinces, 

municipalities, and counties) the responsibility for initiating and coordinating 

reforms, providing public services, and making and enforcing laws within their 

jurisdictions. The central control of personnel is a powerful instrument to induce 

regional officials to follow the central government’s policies. This so-called 

regionally decentralized authoritarian (RDA) regime stands in clear distinction to 

federalism (where governors or mayors are elected from the bottom) and central 

planning. 

Researchers have shown that the central government stipulates 

performance criteria for local leaders, and these local leaders negotiate narrower 

and more precisely defined performance contracts with its sub-levels. For 

example, Tsui and Wang (2004) show that 60 percent of provincial leaders are 

assigned targets related to economic construction. More generally, work 

achievement accounts for 60 to 70 percent of the evaluation of regional officials, 

while political integrity, competence, diligence, and other aspects account for the 

rest (Edin 2003). Similar personnel control is documented between county 
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governments and township and village officials (Whiting 2000). Within this 

structure, every level of government may use absolute and/or relative 

performance in the political contract for the next level. Maskin, Qian and Xu 

(2000) provide evidence that officials from relatively better-performing regions 

have a greater chance of being promoted. Similarly, Chen, Li and Zhou (2005) 

find that provincial officials’ performance relative to the national average and to 

their immediate predecessors has significant impacts on their promotions. All this 

evidence suggests that the central personnel control over the local governments is 

effective and that the model city award policy is likely one of many performance 

criteria that the central government uses to evaluate local officials. 

For gaming of the API to exist, two conditions must hold. First, there 

needs to be enough noise in the true API that one cannot precisely target a 

particular number (e.g. the upper bound of blue sky days) via actual improvement. 

This condition is not difficult to satisfy, given that meteorological conditions such 

as wind, precipitation, and humidity account for 40% of the total variation in 

PM10 (Wang et al. 2009).  

The second necessary condition for gaming to exist is that it needs to be 

difficult to detect. To the extent that the MEP uses the reported API without 

verification, a local MEP branch could report any number, in theory. However, the 

reported API will be disclosed to the public, and citizens (including local media) 

will form their own judgment as to how precise the reported API is relative to 

their personal experience on that city-day. The recent smog in Beijing 

demonstrates the high public awareness of air quality and the power of public 

outcry if the official API is not consistent with personal experience.
24

 This 

suggests that any misreporting cannot stray too far from the truth.  

One way to game the system is reporting an API slightly above 100 as 

slightly below 100. More sophisticated gaming may spread the underreporting if 

the public cannot distinguish small changes in the API (say, 99 vs. 95). Data 

manipulation can also be achieved by relocating monitoring stations or computing 

the aggregated index from a selective sample of existing stations, both of which 

are difficult to detect because the reported API is not station-specific and in situ 

density of air pollutants was not publicly available in our sample period.
25

 

 As summarized in Zitzewitz (2012), “forensic economics” relies on 

several techniques to detect gaming: one is to compare the reported data with 

                         
24

 The heavy smog in Beijing on December 4-6, 2011 caused extensive flight delays and 

cancellations. See BBC December 5, 2011 report “China morning round-up: Beijing heavy smog 

scrutinised” accessed at December 7, 2011 at http://www.bbc.co.uk/news/world-asia-china-

16044098. 
25

Beijing Municipal Environmental Monitoring Center started to publish pollutant densities by 

hour and monitoring stations on January 12, 2012. There are not enough historical data to study 

the reliability of this measure. 

http://www.bbc.co.uk/news/world-asia-china-16044098
http://www.bbc.co.uk/news/world-asia-china-16044098
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other data sources. For example, Fisman and Wei (2004, 2007) and Mishra et al. 

(2007) compare custom data in both origin and destination countries in order to 

identify missing imports or missing exports. Zinman and Zitzewitz (2009) 

compare resort-reported snowfall with official weather data and find that resorts 

are more likely to over-report snowfalls when they can benefit more from such 

over-reporting. Snyder and Zidar (2009) compare economists’ self-reported 

publications (in vitas) with journals' tables of contents and identify subtle forms 

of inflation. This method of collation is limited to the availability of other reliable 

data sources.  

A second method to detect gaming is searching for data patterns that are 

consistent with gaming, for example, bunching around a threshold (Slemrod 1985 

and Saez 2010 on income tax, DeGeorge, Patel and Zeckhauser 1999 on earnings 

management, and Forbes, Lederman and Tombe 2011 on airline delays), patterns 

that should not exist without cheating (Jacob and Levitt 2003 on school test 

scores), or a correlation between the reported data and the situations that present 

strong incentives to game (Michaely and Womack 1999 on stock 

recommendations, Levitt and Syverson 2008 on real estate sales).  

 We use both methods. First, we detect discontinuity in the raw data around 

critical thresholds. Given the clear threshold definition for blue sky days, we 

expect API density to be lower immediately below 100 than immediately above 

100 if gaming exists. Moreover, this discontinuity should be more conspicuous 

after the central government introduces a quantitative measure of blue sky days in 

the evaluation of a model city, if local governments care about winning the model 

city award. With the specified cutoff (80% from 2003 to 2006 and 85% after 

2007), we expect cities that are close to the cutoff in the fourth quarter of a year to 

have an incentive to underreport the API at or below 100. Given the permanence 

of the model city award, we also expect cities that have already won the model 

city award to be less eager to game for the award.  

Our second approach is to compare reported API with visibility and AOD 

data. Given the imperfect comparison of the three air pollution proxies, we will 

investigate their statistical correlations after controlling for other factors that may 

correlate with them in different ways (e.g. weather). To the extent that the 

underreporting of the API generates a random number below but close to 100, we 

expect the correlation between the API and visibility/AOD to be lower when the 

API is close to 100. However, if underreporting is monotonic to the actual API – 

for example, report 105 as 100, 104 as 99, and 101 as 96 – gaming does not 

necessarily predict a lower correlation between the API and visibility/AOD. 

 

4 Tests of Discontinuity 
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 This section examines the discontinuity among API, visibility, and AOD 

data. To the extent that the API cannot be misreported too far from truth, we 

expect misreporting to lead to less density on the right of 100 than on the left.  

 

 

 

4.1 Discontinuity of API and underlying PM10 

 The first row of Figure 1 plots the histogram of the API in our whole 

sample, where bins are defined over the complete API range (0 to 500) with bin 

width=1 (API is reported in integers). The plot shows likely discontinuity at 50, 

100, and 500: the number of observations jumps from 1,408 for 50 to 2,034 for 

51, from 1,367 for 99 and 1,005 for 100 to 509 for 101, and from 2 for 499 to 126 

for 500.  

 One possible explanation for this discontinuity is the API definition. As 

shown in Table 1, the API is a piece-wise linear transformation from the averaged 

in situ measures of the main pollutant on a city-day. As confirmed in simulation, 

the API definition could generate API discontinuity around each category 

threshold even if the underlying pollutant density is continuous. To assess this 

possibility, we focus on the city-days that report PM10 as the main pollutant and 

infer PM10 density from the reported API. Since the main pollutant is not specified 

when the API is below 50, our analysis on PM10 focuses on the city-days with the 

API above 50. 

One data issue arises in this process. Because the API is reported in 

integers and PM10 range (0 to 600) is greater than API range (0 to 500), inferred 

PM10 has zero density for many PM10 numbers. As shown in the second row of 

Figure 1, with bin width=1 we observe positive frequency on only 363 out of the 

600 potential integers of PM10. To address this, we group PM10 by a wider bin 

width of 2, as 2 is the transformation factor from the API to PM10 when the API is 

below 200 and most of the API data are below 200.
26

 

 As shown in Figure 1, when bin width=1, PM10 demonstrates apparent 

discontinuity around 150 (corresponding to API of 100). When bin width is 

widened to 2, human eyes can still identify discontinuity around PM10=150.   

The second column of Figure 1 presents the Burgstahler and Dichev test 

(BDT) of discontinuity (Burgstahler and Dichev 1997). In particular, for any bin 

(j) that is not at the boundaries, we compute a BDT statistics by comparing the 

                         
26 When API is between 50 and 100, PM10=50+(API-50)/(100-50)*(150-50)=50+(API-50)*2. 

When API is between 100 and 200, PM10=150+(API-100)/(200-100)*(350-150)=150+(API-

100)*2. When API is between 200 and 300, PM10=350+(API-200)/(300-200)*(420-

350)=350+(API-200)*0.7. When API is between 300 and 400, PM10=420+(API-300)/(400-

300)*(500-420)=420+(API-300)*0.8. When API is between 400 and 500, PM10=500+(API-

400)/(500-400)*(600-500)=500+(API-400). 
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bin’s observed relative frequency (𝑝̂𝑗) with the average of frequencies of adjacent 

bins (𝑝̂𝑗−1 and 𝑝̂𝑗+1):  

𝐵𝐷𝑇𝑗 =

𝑝𝑗−1+𝑝𝑗+1

2
− 𝑝̂𝑗

√𝑣𝑎𝑟(
𝑝𝑗−1+𝑝𝑗+1

2
− 𝑝̂𝑗)

 

where 𝑛 is the total number of observations and  

𝑣𝑎𝑟 (
𝑝̂𝑗−1 + 𝑝̂𝑗+1

2
− 𝑝̂𝑗) =

1

𝑛
𝑝̂𝑗(1 − 𝑝̂𝑗) +

1

4𝑛
(𝑝̂𝑗−1 + 𝑝̂𝑗+1)(1 − 𝑝̂𝑗−1 − 𝑝̂𝑗+1) 

+
1

𝑛
𝑝̂𝑗(𝑝̂𝑗−1 + 𝑝̂𝑗+1). 

According to Burgstahler and Dichev (1997) and Takeuchi (2004), 𝐵𝐷𝑇𝑗 

conforms to a standard normal distribution if the true distribution underlying the 

data is continuous. Obviously, the power of BDT depends on sample size and bin 

width. Using Monte Carlo simulation, Takeuchi (2004) shows that the test is 

powerful over moderate sample size (n>500) and is able to detect a small jump if 

the sample size is large (n>5000). Our sample size is 126,688 for the API and 

92,383 for PM10.
27

 

The first graph in the second column of Figure 1 draws BDT against each 

API value. The two dashed lines correspond to 2.58 and -2.58, the critical values 

for the 99% confidence in a standard normal distribution. Consistent with the 

histogram on the left, this BDT graph confirms significant API discontinuity in 

the neighborhood of 50, 100, and 500. The large BDT at 499 is not surprising 

given the censoring at 500. The significant BDTs around 50 can be driven by 

gaming or the piece-wise definition of API. We cannot distinguish the two 

because the major pollutant is not reported unless the API is greater than 50.  

The other two graphs in the second column of Figure 1 present the BDT 

for each bin of PM10. With bin width=1 the BDT graph confirms discontinuity at 

many points (due to gaps in PM10 data), but the discontinuity for PM10=150 still 

stands out. With bin width=2, the discontinuity at PM10=150 remains significant. 

This suggests that the discontinuity of API at 100 is not completely driven by its 

piece-wise definition.  

                         
27

One potential caveat of the BDT is that its value is proportional to the square root of sample size. 

When sample size is very large (e.g. 2.6 million observations for our point-specific AOD data) and 

the value of each raw data point is limited to a small number of decimal points, each computed 

BDT can exceed the critical value even if the underlying distribution is continuous. This is partly 

why we choose to focus on city-day average of the AOD rather than point-specific AOD. While 

this choice may create some smoothness in the AOD, it is arguably a better comparison with the 

API, not only because they are both at the city-day level but also because the API by construction 

is an average of station- and time-specific data on a city-day. 
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Figure 2 presents the BDT statistics of API, PM10 (bin-width=1) and PM10 

(bin-width=2) before and after 2003 separately. The discontinuity around 

API=100 and PM10=150 is more significant after 2003, consistent with the   
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Figure 1 Distribution and Burgstahler and Dichev test for API and inferred PM10 
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Figure 2:Burgstahler and Dichev test for API and PM10 discontinuity before and after 2003 

 
API (bin width=1) before 2003 

 

API(bin width=1) after 2003 

 
PM10 (bin width=1), before 2003 

 

PM10 (bin width=1), after 2003 

 
PM10 (bin width=2), before 2003 

 

PM10(bin width=2), after 2003 
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introduction of blue sky targets in 2003. An alternative explanation is that there 

are more data after 2003, and the BDT increases with sample size by definition. 

The BDT statistics use only bins adjacent to the study bin. A more general 

test introduced by McCarry (2008) employs all the data to the left and right of a 

potential break point and smoothes the histogram by running local linear 

regressions on the two sides separately. If there is no discontinuity at the break 

point, the two predicted densities at the break point should be close to each other. 

This yields a discontinuity estimate (log difference in the two predicted densities 

at the break point) and the corresponding standard error and t statistics.  

Figure 3A presents the API histogram with smoothed densities to the left 

and right of 100. Following McCarry (2008), we set bin size as 1 and bandwidth 

as 15. Below Figure 3A, we report the discontinuity estimate, standard error, and 

t-test for the full sample of the API and the subsamples of 2000-2002, 2003-2006, 

2007-2009, model cities, and non-model cities. By model cities, we mean all the 

(≥ 𝑦 − 1) observations of a city if that city won the model city award in year 𝑦. 

Within model cities, we further distinguish model cities in the years preparing for 

and receiving the award (𝑦 − 1 and 𝑦) versus years after winning the award (>
𝑦).  

Not only does the McCarry test confirm the API discontinuity at 100; it 

shows that the discontinuity estimate more than doubled from 2000-2002 to 2003-

2006 and only declined slightly after 2007. Similarly, the discontinuity estimate 

for model cities almost triples that of non-model cities. These patterns support the 

argument that local governments have more incentives to underreport the API 

since the central government began emphasizing the number of blue sky days in 

model city evaluation. Note that within model cities, the discontinuity estimate is 

similar in the years before and after winning the award. 

Figure 3B repeats the exercise for inferred PM10. Given the data gaps in 

PM10, we define the x-axis as PM10/2 and conduct the McCarry test with bin 

size=1 and bandwidth=10. Both the graph and the discontinuity estimates show 

significant discontinuity around PM10=150 after 2003, and such discontinuity is 

more conspicuous for model cities. This pattern is consistent with gaming around 

PM10=150 and thus API=100. 

Is it possible that the API discontinuity around 100 is driven by local 

governments targeting 100 in real air quality? If the answer is yes, to the extent 

that visibility and the AOD are correlated with the API, we shall observe some 

discontinuity for these two variables as well, especially in the days where the API 

is not far from 100. Conversely, if the API discontinuity at 100 is driven by 

gaming, visibility and the AOD should not demonstrate any discontinuity because 

they are used in neither mass media nor model city evaluation.  
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Figure 3A: McCarry test of the API and discontinuity around 100 

(X axis: API, Y axis: density, bin size=1, bandwidth=15) 

 

 Full sample 2000-2002 2003-2006 2007-2009 Model cities Model cities 

0-1 years 

before award 

Model 

cities after 

award 

Non-model 

cities 

Discontinuity 

estimate 

-0.776 -0.409 -0.958 -0.889 -1.568 -1.497 -1.589 -0.536 

 

Standard error 0.029 0.052 0.044 0.060 0.068 0.139 0.078 0.033 

T-statistics -26.744*** -7.901*** -21.787*** -14.941** -23.005*** -10.752*** -20.335*** -16.358*** 

*** p<0.01. If a city won the model city award in year y, the sample of “model cities” includes its daily observations in years in or later than y-

1, the sample of “model cities 0-1 years before award” includes its daily observations in years y and y-1, and the sample of “model cities after 

award” includes its daily observations in years from y+1 and on. The sample of “non model cities” includes every observation that is not in the 

sample of “model cities.” According to McCarry (2008), the discontinuity estimate represents the log difference in height between the two sides 

of the discontinuity. 
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Figure3B McCarry test for discontinuity of inferred PM10 around PM10=150 

(X axis: PM10/2, Y axis: density, bin size=1, bandwidth=10) 

 
 

 Full sample 2000-2002 2003-2006 2007-2009 Model 

cities 

Model cities 

0-1 years 

before award 

Model 

cities after 

award 

Non-model 

cities 

Discontinuity 

estimate 

-.638 -.518 -.692 -.658 -.854 -.865 -.906 -.537 

Standard error .034 .065 .049 .066 .061 .130 .080 .041 

T-statistics -18.962*** -7.925*** -14.184*** -9.948*** -14.059*** -6.655*** -11.305*** -13.224*** 

*** p<0.01. If a city won the model city award at year y, the sample of “model cities” includes its daily observations in years at or 

later than y-1, the sample of “model cities 0-1 years before award” includes its daily observations in years y and y-1, and the sample of 

“model cities after award” includes its daily observations in years from y+1 and on. The sample of “non model cities” includes every 

observation that is not in the sample of “model cities.” 
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Figures 4 and 5 present the BDT for visibility and the AOD. Contrary to 

our expectation, visibility demonstrates significant discontinuity at integers, 

especially multiples of five. This phenomenon is easy to explain because visibility 

is based on human visual observation and manual reporting. The bottom two 

panels of Figure 4 separate the BDT of visibility by ranges of API (0-40, 40-80, 

80-120, 120-500). If the API discontinuity at 100 reflects real air quality and 

visibility is a valid proxy of air quality, we may observe more discontinuity of 

visibility when the API is between 80 and 120, as compared to other ranges of the 

API. Figure 4 does not support this conjecture. As for the city-day average of the 

AOD, Figure 5 shows no obvious discontinuity at any particular value, which is 

further confirmed by ranges of the API.
28

 These patterns are consistent with the 

lack of gaming incentives in the AOD data. 

Above all, the observed API distribution reveals a significant discontinuity 

at 100 and such discontinuity is not completely driven by the piece-wise 

definition of the API. The distributions of the API and inferred PM10 are 

consistent with gaming in response to the definition of blue sky days and the 

model city policy. 

 

5. Regression results on model city incentives 

This section uses regressions to detect whether cities respond to the 

targeted number of blue sky days in model city evaluation. Because the pressure 

for city 𝑐 to manipulate the API of day 𝑑 in year 𝑦 depends on the target and 

the previously achieved number of blue sky days, we define  

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑐𝑦𝑑 =
𝑡𝑎𝑟𝑔𝑒𝑡 # 𝑜𝑓 𝑏𝑙𝑢𝑒 𝑠𝑘𝑦 𝑑𝑎𝑦𝑠 − 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑙𝑢𝑒 𝑠𝑘𝑦 𝑑𝑎𝑦𝑠

# 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑦𝑒𝑎𝑟 − 𝑑𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
. 

 

For example, if a city realized 16 blue sky days in January 2003, then its pressure 

on February 1 is (365*80%-16)/(365-32)=0.829. If February 1 is not a blue sky 

day, then its pressure on February 2 is (365*80%-16)/(365-33)=0.831. 

Several adjustments are necessary. First, Pressure is coded 0 before 2003, 

because the blue sky day target was not effective until 2003. Second, if the 

targeted number of blue sky days is achieved before the end of the year, then 

Pressure is coded 0 after the achievement. Third, Pressure is coded 0 if the above 

formula yields a value larger than 1, which implies that it is impossible to achieve 

the 

                         
28In unreported graphs, we plot the BDT against a fine grid of point-specific AOD. Probably due to 

the very large sample size (2.6 million) and the limited decimal points in the AOD data, we have 

the BDT exceeding the critical value everywhere and across all ranges of the API. Even if we take 

the BDT values literally, it implies discontinuity everywhere, which is inconsistent with the 

special discontinuity of API around 100.  
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Figure 4 Histogram and Burgstahler and Dichev Test of Discontinuity for Visibility 

Visibility ranges from 0 to 60 kilometers. Bin width = 1 kilometer. 

 

Histogram of Visibility 

 

Burgstahler and Dichev Test  

 
When the API is between 0 and 40  

(12,287 observations) 

 

When the API is between 40 and 80  

(68,997 observations) 

 
When the API is between 80 and 120  

(35,223 observations) 

 

 

When the API is between 120 and 500  

(10,181 observations) 
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Figure 5: Histogram and Burgstahler and Dichev Test of Discontinuity 

for city-day average of AOD 

Bin width = 0.01. 

 
Histogram of city-day average of AOD 

 

Burgstahler and Dichev Test  

 
When the API is between 0 and 40  

(3924 observations) 

 

When the API is between 40 and 80  

(35,070 observations) 

 
When the API is between 80 and 120  

(19,865 observations) 

 

When the API is between 120 and 500  

(5,090 observations) 
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target.
29

 Fourth, the above formula is not well defined for the last day of a 

calendar year. We code Pressure 0 for the last day of year, because it should be 

zero if the target has been realized before the last day. If the target has not been 

met, there is no way to meet it unless the city is only one day short of the target, 

which is rare in our data.
30

 Above all, two types of variations help identify the 

effect of 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒: one is the comparison between the days when gaming could 

help (𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 > 0) and the days when gaming is not necessary or unhelpful; the 

other is different magnitudes of pressure conditional on 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 > 0.  

 

To capture potential gaming incentives of model city, we define: 

 

𝑀𝑜𝑑𝑒𝑙𝑐𝑦 = 1 if city c is announced as a model city in year y; 

𝑀𝑜𝑑𝑒𝑙𝑙𝑎𝑔𝑐𝑦 = 1 if city c has been announced a model city before year y;  

𝑀𝑜𝑑𝑒𝑙𝑎ℎ𝑒𝑎𝑑𝑐𝑦 = 1 if city c is announced as a model city in year y + 1. 
 

Given the API discontinuity around 100, we want to understand whether 

cities systematically underreport an above-100 API number as below 100. To the 

extent that underreporting must be subtle to avoid public attention, we expect 

gaming to lead to a lower probability to report right above 100 (defined as 

between 101 and 105, inclusive) and a higher probability to report right below 

100 (defined as between 96 and 100, inclusive). Alternatively, if model cities won 

the award because of overall improvement in air quality, the whole API 

distribution should shift to the left. Because the blue sky threshold is on the right 

tail of the API distribution (Figure 1), real improvement should imply lower API 

density in both [96,100] and [101,105]. 

At first glance, it seems straightforward to regress a dummy of whether 

the reported API falls into [96,100] or [101,105] on 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑀𝑜𝑑𝑒𝑙, 𝑀𝑜𝑑𝑒𝑙𝑙𝑎𝑔, 𝑀𝑜𝑑𝑒𝑙𝑎ℎ𝑒𝑎𝑑 and their interactions for the full 

sample. This regression is likely to generate bias because 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 is defined by 

the API on previous days of the same year. Not only does this present a classical 

econometrics problem with a lagged dependent variable on the right hand side; it 

is also possible that local MEP branches (or city governments) engage in 

sophisticated dynamic programming throughout the year in order to meet the 

targeted number of blue sky days. Since officials are likely to know more than we 

do about the benefits and costs of meeting the target, it is difficult for us to 

capture this dynamic behavior in an explicit model.  

                         
29 Results change little if we add a separate dummy to control for the cases of “impossible to 

reach the target.” 
30This happens only once in our data, for Yinchuan in 2003, and its last day API reading is 101 in 

2003. This city did not win the model city award until 2011. 
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To address this problem, we focus on the last quarter of each year and take 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  as of September 30 as a predetermined variable. We run the 

regression: 

 

𝑌𝑐𝑦𝑑 = 𝛼𝑐 + 𝛼𝑑 + 𝜃𝑐 ∙ 𝑑 + 𝛽𝑥𝑋𝑐𝑦𝑑 + 𝛽1𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0930𝑐𝑦𝑑 + 𝛽2𝑀𝑜𝑑𝑒𝑙𝑐𝑦 

+𝛽3𝑀𝑜𝑑𝑒𝑙𝑙𝑎𝑔𝑐𝑦 + 𝛽4𝑀𝑜𝑑𝑒𝑙𝑎ℎ𝑒𝑎𝑑𝑐𝑦 

+𝛾1𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0930𝑐𝑦𝑑 ∙ 𝑀𝑜𝑑𝑒𝑙𝑐𝑦 + 𝛾2𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0930𝑐𝑦𝑑 ∙ 𝑀𝑜𝑑𝑒𝑙𝑙𝑎𝑔𝑐𝑦 

+𝛾3𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0930𝑐𝑦𝑑 ∙ 𝑀𝑜𝑑𝑒𝑙𝑎ℎ𝑒𝑎𝑑𝑐𝑦+𝜀1𝑐𝑦𝑑 

 

where  𝑌𝑐𝑦𝑑  is the dummies of 96 ≤ 𝐴𝑃𝐼 ≤ 100 , 101 ≤ 𝐴𝑃𝐼 ≤ 105 , 140 ≤

PM10 ≤ 150, or 151 ≤ PM10 ≤ 160. The choice of neighborhood range is 

arbitrary, but we ran the same regressions by alternative ranges (+/-10, +/-8, +/-3 

for the API and +/- 20, +/- 16, +/- 6 for PM10) and obtained similar results.
31𝛼𝑐 are 

city fixed effects, 𝛼𝑑  are date fixed effects, 𝜃𝑐 are city-specific time trends
32

, 

and X are control variables including city-day weather
33

 and socioeconomic  

indicators such as GDP growth rate, GDP per capita, industrial production, 

population, energy consumption, number of private vehicles, and a dummy for 

regular heating season if heating is provided by the city. 

Our main interest is the two-way interaction between 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0930 and 

the status of model city. If a city won the model city award by gaming the API, 

gaming should be more apparent in the year of or the year immediately before the 

award, and when it is subject to a greater pressure to reach the target. Errors are 

clustered by city. 

Linear probability
34

 results are reported in Table 2. The first two columns 

focus on the API in the full sample; the last two columns focus on inferred PM10 

when PM10 is the dominant pollutant. Coefficients on 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0930 ∗
𝑀𝑜𝑑𝑒𝑙 and 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0930 ∗ 𝑀𝑜𝑑𝑒𝑙𝑎ℎ𝑒𝑎𝑑 suggest that the higher the pressure 

to reach the target, the more likely it is for a city that is about to win the award to 

report an API/PM10 right below the blue sky threshold. Similarly, the higher the 

pressure, the less likely the city is to report an API/PM10 right above the threshold. 

All these effects are relative to two or more years before winning the award. In 

comparison, in the years after winning the award, neither API nor TSP regressions  
 

                         
31The signs of key coefficients remain the same as before, but those in the smaller bands (+/-3 for 

API and +/-6 for PM10) are less significant due to fewer data frequencies in the small bands. 
32

In the reported table, we use a city-specific linear trend. Results are similar when we use a 

quadratic or cubic trend instead.  
33

Weather variables include rainfall, temperature, barometric pressure, sunshine, humidity (if 

rainfall is zero), wind velocity, and four dummies for wind direction (east, south, west, and north). 
34

 We use a linear probability model because every regression includes a large number of date 

fixed effects. 
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Table 2: Regression results on pressure to meet the target of model city  

(observation = city-day) 

Linear probability model, observations from the 4
th

 quarter only. 

Pressure0930 = 
𝑡𝑎𝑟𝑔𝑒𝑡 # 𝑜𝑓 𝑏𝑙𝑢𝑒 𝑠𝑘𝑦 𝑑𝑎𝑦𝑠−𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑙𝑢𝑒 𝑠𝑘𝑦 𝑑𝑎𝑦𝑠

# 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑦𝑒𝑎𝑟−𝑑𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
as of 9/30 for 2003 and after. 

 Full sample Sample with PM10 as 

dominant pollutant 

 (1) (2) (1) (2) 

VARIABLES API in 

[96,100] 

API in 

[101,105] 

PM10 in 

[140,150] 

PM10 in 

[151,160] 

pressure0930_model 0.088** -0.047** 0.124** -0.060*** 

 (0.033) (0.018) (0.049) (0.019) 

pressure0930_modellag 0.027 -0.017 0.019 -0.022 

 (0.020) (0.018) (0.020) (0.018) 

pressure0930_modelhead 0.127*** -0.016 0.054 -0.044** 

 (0.028) (0.026) (0.035) (0.021) 

pressure0930 -0.020 0.014 -0.026 0.016 

 (0.019) (0.013) (0.020) (0.012) 

Model -0.008 -0.004 -0.011 0.001 

 (0.027) (0.012) (0.029) (0.014) 

Modellag 0.011 -0.008 0.027 -0.005 

 (0.031) (0.014) (0.034) (0.015) 

Modelhead -0.035 0.003 -0.006 0.009 

 (0.023) (0.011) (0.023) (0.012) 

Weather  Y Y Y Y 

Date FE Y Y Y Y 

City FE Y Y Y Y 

City-specific trend Y Y Y Y 

Socioeconomic  Y Y Y Y 

Observations 31,688 31,688 24,288 24,288 

R-squared 0.065 0.067 0.069 0.065 

     

Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1. Socioeconomic 

factors include GDP growth rate, GDP per capita, industrial production, population, 

energy consumption and vehicle number by city and year, as well as the dummy for 

regular heating season. Weather variables include rainfall, temperature, barometric 

pressure, sunshine, humidity (if rainfall is zero), wind velocity, and four dummies for 

wind direction (east, south, west, and north). 
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suggest significant changes in the neighborhood of the blue sky threshold. This 

finding is consistent with the semi-permanent nature of the model city award.  

The PM10 coefficients suggest that, compared to a city facing 10% 

pressure, a city facing 60% pressure
35

 as of September 30 in the years of winning 

the award is 6.2 percentage points more likely to report a PM10 right below the 

blue sky threshold and 3.0 percentage points less likely to report a PM10 right 

above the threshold. In the years immediately before winning the award, the 

corresponding numbers are 2.7 percentage points
36

 more likely to report a PM10 

right below the blue sky threshold and 2.2 percentage points less likely to report a 

PM10 right above the threshold. These magnitudes are large compared to the 

5.88% likelihood of observing a PM10 in [140,150] and 2.28% likelihood of 

observing a PM10 in [151,160] in the raw data. 

For robustness, we rerun the regressions using October 31 instead of 

September 30 as the cutoff date. This makes the regression sample smaller. 

Coefficients on the two-way interactions between 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 and model city 

status are similar to those reported in Table 2, some with larger standard errors. 

  

6. A broader evaluation of model city policy 

 Given the permanency of model city award and the evidence of gaming 

API around 100, a remaining question is whether model city policies are effective 

at motivating local governments to engage in an overall improvement of air 

quality. Specifically, we have two predictions: first, if the model city award is 

granted to acknowledge air quality improvement of a city, model cities should 

have more air quality improvement right before winning the award than at least 

two years before the award. Second, the lax re-examination policy implies that 

model cities could reduce efforts to improve air quality after winning the award. 

 Tables 3A and 3B summarize the API and PM10 by city type and city status 

in terms of model city award. In particular, we distinguish three city types: cities 

that did not win any model city award by 2010 (total 22 cities), cities that won the 

model city award in our sample period of 2000-2009 (total 9 cities), and cities that 

won the award in or before 1999 (total 6 cities). For cities that won the award 

during our sample period, we further distinguish their observations for at least 2 

years before the award, 0-1 years before the award, and all years after the award. 

As expected, cities that won the award earlier tend to have a lower average API, 

lower PM10, and higher counts of blue sky days. Similarly, for the cities that won 

the award during our sample, API and blue sky days improve over time.  

 Table 3A also shows that the probability of the API in [96,100] increases 

during the award-winning years but decreases afterwards. Given the fact that the 

                         
35

 Among 369 city-year observations, 135 have pressure0930=0. Conditional positive 

pressure0930, the mean of pressure0930 is 0.54 and standard deviation is 0.20. 
36

 Of the four numbers, all but 2.7 are significant from zero with 95% confidence.  
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Table 3A: Summary of API before, during and after a city won the Model City Award (obs=city-day) 

 City type 

 Did not win model 

city award before 

2010  

Won model city 

award between 

2000 and 2009 

Won model city 

award at or before 

1999 

Number of cities per type 22 9 6 

API    

>= 2 years before winning the award 80.21 82.09  

 (42.34) (39.37)  

0-1 years before winning the award  77.52  

  (32.28)  

After winning the award  74.34 56.67 

  (28.68) (26.37) 

Blue sky day? (=1 if API<=100)    

>= 2 years before winning the award 80.89% 79.47%  

 (0.39) (0.40)  

0-1 years before winning the award  85.91%  

  (0.35)  

After winning the award  89.18% 96.34% 

  (0.31) (0.19) 

API in [96,100]    

>= 2 years before winning the award 4.81% 5.91%  

 (0.21) (0.24)  

0-1 years before winning the award  7.21%  

  (0.26)  

After winning the award  6.60% 2.00% 

  (0.25) (0.14) 

API in [101,105]    

>= 2 years before winning the award 2.77% 2.50%  

 (0.16) (0.16)  

0-1 years before winning the award  1.80%  

  (0.13)  

After winning the award  1.34% 0.48% 

  (0.12) (0.07) 
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Table 3B: Summary of PM10 before, during and after a city won the Model City Award (obs=city-day) 

 City type 

 Did not win model 

city award before 

2010  

Won model city 

award between 

2000 and 2009 

Won model city 

award at or before 

1999 

Number of cities per type 22 9 6 

PM10    

>= 2 years before winning the award 125.00 126.20  

 (70.86) (68.04)  

0-1 years before winning the award  116.96  

  (56.30)  

After winning the award  110.96 93.23 

  (49.81) (42.86) 

PM10 in [140,150]    

>= 2 years before winning the award 6.90% 7.31%  

 （0.25） (0.26)  

0-1 years before winning the award  9.86%  

  (0.30)  

After winning the award  8.68% 4.01% 

  (0.28) (0.20) 

PM10 in [151,160]    

>= 2 years before winning the award 2.83% 2.53%  

 (0.17) (0.16)  

0-1 years before winning the award  1.85%  

  (0.13)  

After winning the award  1.33% 0.79% 

  (0.11) (0.09) 
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overall density of API declines in the range of 96 to 105, the non-monotonic 

change is inconsistent with actual air quality improvement over time but 

consistent with greater incentive to report the API in [96,100] right before 

winning the award. In comparison, the probability of the API falling in [101,105] 

declines both during and after the award winning years. This finding could be 

consistent with gaming or actual improvement. 

 To test whether the model city award is granted to acknowledge air quality 

improvement of a city or motivates model cities to reduce air quality protection 

after receiving the award, we regress each air quality measure on the timing of 

model city award while controlling for city fixed effects, date fixed effects, 

weather, and socioeconomic indicators as specified above. Effectively, the default 

control cities are those that do not win any model city award before the end of our 

sample period. Compared with them, a city that won the award in our sample 

should have better air quality right before winning the award and worse air quality 

after winning the award if air quality improvement targets the model city award. 

We define 

 

 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑐𝑦𝑑 = 1 if city c won the model city award in year y or y+1, 

 𝐴𝑓𝑡𝑒𝑟𝑐𝑦𝑑 = 1 if city c won the model city award in or before year y-1, 

 

and run regressions at the city-day level: 

 
 ln (𝐴𝑃𝐼𝑐𝑦𝑑) = 𝛼1𝑐 + 𝛼1𝑑 + 𝜃1𝑐 ∙ 𝑑 + 𝛾11𝑋𝑐𝑦𝑑 + 𝛽11 ∙ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑐𝑦𝑑 + 𝛽12 ∙ 𝐴𝑓𝑡𝑒𝑟𝑐𝑦𝑑+𝜖1𝑐𝑦𝑑  

 

 ln (𝑃𝑀10𝑐𝑦𝑑) =

𝛼2𝑐 + 𝛼2𝑑 + 𝜃2𝑐 ∙ 𝑑 + 𝛾21 ∙ 𝑋𝑐𝑦𝑑 + 𝛽21 ∙ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑐𝑦𝑑 + 𝛽22 ∙ 𝐴𝑓𝑡𝑒𝑟𝑐𝑦𝑑+𝜖3𝑐𝑦𝑑 

 

 1(𝐴𝑃𝐼𝑐𝑦𝑑 ≤ 100) =

𝛼3𝑐 + 𝛼3𝑑 + 𝜃3𝑐 ∙ 𝑑 + 𝛾31 ∙ 𝑋𝑐𝑦𝑑 + 𝛽31 ∙ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑐𝑦𝑑 + 𝛽32 ∙ 𝐴𝑓𝑡𝑒𝑟𝑐𝑦𝑑+𝜖3𝑐𝑦𝑑 

 

 ln (𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑐𝑦𝑑) =

𝛼4𝑐 + 𝛼4𝑑 + 𝜃4𝑐 ∙ 𝑑 + 𝛾41 ∙ 𝑋𝑐𝑦𝑑 + 𝛽41 ∙ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑐𝑦𝑑 + 𝛽42 ∙ 𝐴𝑓𝑡𝑒𝑟𝑐𝑦𝑑+𝜖4𝑐𝑦𝑑 

 

 ln(𝐴𝑂𝐷̅̅ ̅̅ ̅̅
𝑐𝑦𝑑) = 𝛼5𝑐 + 𝛼5𝑑 + 𝜃5𝑐 ∙ 𝑑 + 𝛾51 ∙ 𝑋𝑐𝑦𝑑 + 𝛽51 ∙ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑐𝑦𝑑 + 𝛽52 ∙ 𝐴𝑓𝑡𝑒𝑟𝑐𝑦𝑑+𝜖5𝑐𝑦𝑑 . 

 

 Table 4 shows that the air quality in model cities does not significantly 

improve in the 0-1 years right before winning the model city award, nor does it 

decrease after winning the award. This finding is consistent across the API, PM10, 

visibility, the AOD and the dummy of blue sky. In light of the significant air 

quality improvement found in Beijing around the 2008 Olympic Games (Chen et 

al. 2011), we rerun the regressions without Beijing, without other Olympic-related 

cities, and without data for 2008 and 2009. The results are similar. 
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Table 4: Model City Award and Air Quality Improvement (observation=city-day) 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Log 

(API) 

Log 

(API) 

Log 

(PM10) 

Log 

(PM10) 

Log 

(visibility) 

Log 

(visibility) 

Log 

(AOD) 

Log 

(AOD) 

API 

<=100 

API 

<=100 

0-1 years before winning 

model city award 

-0.040 -0.029 -0.029 -0.019 -0.037 -0.050 0.046 0.134 0.023 0.028 

 (0.027) (0.043) (0.029) (0.040) (0.029) (0.034) (0.109) (0.098) (0.037) (0.041) 

After winning model city 

award 

-0.037 -0.041 -0.003 -0.004 0.048 0.033 0.008 0.018 0.003 0.016 

 (0.035) (0.058) (0.045) (0.058) (0.058) (0.067) (0.075) (0.110) (0.046) (0.049) 

Weather  Y Y Y Y Y Y Y Y Y Y 

Date FE Y Y Y Y Y Y Y Y Y Y 

City FE Y Y Y Y Y Y Y Y Y Y 

City-specific trend  Y  Y  Y  Y  Y 

Socioeconomic   Y  Y  Y  Y  Y 

Observations 126688 126688 92,383 92,383 126684 126684 126706 126706 12668

8 

126688 

R-square 0.524 0.547 0.449 0.475 0.533 0.540 0.479 0.495 0.292 0.318 

Standard errors are clustered by city and in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Socioeconomic factors include GDP growth rate, 

GDP per capita, industrial production, population, energy consumption and vehicle number by city and year, as well as the dummy for regular 

heating season. Weather variables include rainfall, temperature, barometric pressure, sunshine, humidity (if rainfall is zero), wind velocity, and 

four dummies for wind direction (east, south, west, and north). 
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7. Comparison of API/ PM10 with visibility and AOD  

 This section examines whether visibility and AOD are less correlated with 

API when the API are reported to be close to 100. In particular, we define 

𝐿𝑒𝑓𝑡 = 1 if API is in [96,100], 

𝑅𝑖𝑔ℎ𝑡 = 1 if API is in [101,105], 

and run the regressions: 

 

ln(𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑐𝑦𝑑) = 𝛼1𝑐 + 𝛼1𝑑 + 𝜃1𝑐 ∙ 𝑑 + 𝛾1 ∙ 𝑋𝑐𝑦𝑑 + 𝛽11 ∙ ln(𝐴𝑃𝐼𝑐𝑦𝑑) 

+𝛽12 ∙ 𝐿𝑒𝑓𝑡𝑐𝑦𝑑 + 𝛽13 ∙ 𝑅𝑖𝑔ℎ𝑡𝑐𝑦𝑑 + 𝛽14 ∙ ln (𝐴𝑃𝐼𝑐𝑦𝑑) ∙ 𝐿𝑒𝑓𝑡𝑐𝑦𝑑 

+𝛽15 ∙ ln (𝐴𝑃𝐼𝑐𝑦𝑑) ∙ 𝑅𝑖𝑔ℎ𝑡𝑐𝑦𝑑+𝜖1𝑐𝑦𝑑; 
 

ln (𝐴𝑂𝐷̅̅ ̅̅ ̅̅
𝑐𝑦𝑑) = 𝛼2𝑐 + 𝛼2𝑑 + 𝜃2𝑐 ∙ 𝑑 + 𝛾2 ∙ 𝑋𝑐𝑦𝑑 + 𝛽21 ∙ ln (𝐴𝑃𝐼𝑐𝑦𝑑) 

+𝛽22 ∙ 𝐿𝑒𝑓𝑡𝑐𝑦𝑑 + 𝛽23 ∙ 𝑅𝑖𝑔ℎ𝑡𝑐𝑦𝑑 + 𝛽24 ∙ ln (𝐴𝑃𝐼𝑐𝑦𝑑) ∙ 𝐿𝑒𝑓𝑡𝑐𝑦𝑑 

+𝛽25 ∙ ln (𝐴𝑃𝐼𝑐𝑦𝑑) ∙ 𝑅𝑖𝑔ℎ𝑡𝑐𝑦𝑑+𝜖2𝑐𝑦𝑑. 
 

 As before, control variables 𝑋𝑐𝑦𝑑  include weather and socioeconomic 

indicators. Errors are clustered by city. We present the regression results of 

visibility in Table 5 and the AOD in Table 6. In both tables, the left panel is for the 

API using the full sample; the right panel is for PM10 using the PM10 dominant 

sample. In the PM10 regressions, Left and Right are adjusted according to whether 

PM10 is in [140,150] or [151,160].  

 As expected, the API and PM10 are negatively correlated with visibility 

and positively correlated with the AOD. In both tables, the coefficients of 

ln (𝐴𝑃𝐼) ∙ 𝐿𝑒𝑓𝑡 and ln(𝐴𝑃𝐼) ∙ 𝑅𝑖𝑔ℎ𝑡 are not significantly different from zero with 

more than 95% confidence. ln (𝐴𝑃𝐼) ∙ 𝑅𝑖𝑔ℎ𝑡 is marginally significant in Table 5 

(with a sign opposite to what we would expect under gaming), but its significance 

disappears if the regression is run on the PM10 dominant sample only. This 

suggests that the stronger correlation between visibility and the API when the API 

is above 100 is probably driven by pollutants other than PM10.  

 Overall, these results are inconsistent with the gaming prediction that the 

API and PM10 should be less correlated with visibility and with the AOD when 

they are close to the blue sky day cutoff. However, these findings do not rule out 

all types of gaming. It is possible that the extent of underreporting is not random 

(e.g. shifting down the API by a constant). Even if underreporting is random, it 

could go much further below the blue sky threshold. It is also possible that 

visibility and the AOD are more related to fine particles than the API and PM10, 

and this definitional difference dominates gaming underlying the API or PM10.



35 

 

Table 5: Correlation between API/PM10 and Visibility (observation =city-day) 

 
Full sample  Sample with PM10 as the dominant pollutant 

 
Ln(visibility) Ln(visibility) Ln(visibility)  Ln(visibility) Ln(visibility) Ln(visibility) 

Ln(API) -0.381*** -0.381*** -0.404*** Ln(PM10) -0.313*** -0.314*** -0.331*** 

 (0.034) (0.034) (0.035)  (0.023) (0.023) (0.023) 

Ln(API)*Left  0.127 -0.009 Ln(PM10)*Left  0.073 0.037 

  (0.359) (0.373)   (0.271) (0.280) 

Ln(API)*Right  -1.323* -1.166* Ln(PM10)*Right  -0.726 -0.635 

  (0.720) (0.669)   (0.536) (0.500) 

Left  -0.589 0.031 Left  -0.362 -0.187 

  (1.641) (1.705)   (1.348) (1.393) 

Right   6.151* 5.415* Right   3.677 3.217 

  (3.341) (3.103)   (2.710) (2.528) 

City FE Y Y Y  Y Y Y 

Date FE Y Y Y  Y Y Y 

City-specific trend   Y    Y 

Socioeconomic    Y    Y 

Observations 126684 126684 126684  92,379 92,379 92,379 

R-squared 0.561 0.561 0.570  0.573 0.573 0.581 

Standard errors are clustered by city. Standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1. Socioeconomic factors include GDP growth 

rate, GDP per capita, industrial production, population, energy consumption, and vehicle number by city and year, as well as the dummy for 

regular heating season. Weather variables include rainfall, temperature, barometric pressure, sunshine, humidity (if rainfall is zero), wind 

velocity, and four dummies for wind direction (east, south, west, and north). 
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Table 6: Correlation between API/PM10 and city-day average of AOD (observation =city-day) 

 

 
Full sample  Sample with PM10 as the dominant pollutant 

 
Ln(AOD) Ln(AOD) Ln(AOD)  Ln(AOD) Ln(AOD) Ln(AOD) 

Ln(API) 0.415*** 0.410*** 0.427*** Ln(PM10) 0.285*** 0.279*** 0.185*** 

 (0.042) (0.042) (0.045)  (0.026) (0.026) (0.020) 

Ln(API)*Left  0.417 0.555 Ln(PM10)*Left  0.442 0.299 

  (0.508) (0.496)   (0.367) (0.268) 

Ln(API)*Right  0.771 0.675 Ln(PM10)*Right  0.113 0.371 

  (0.907) (0.923)   (0.806) (0.494) 

Left  -1.877 -2.503 Left  -2.158 -1.469 

  (2.324) (2.269)   (1.826) (1.335) 

Right   -3.556 -3.110 Right   -0.548 -1.860 

  (4.203) (4.277)   (4.071) (2.493) 

City FE Y Y Y  Y Y Y 

Date FE Y Y Y  Y Y Y 

City-specific trend   Y    Y 

Energy    Y    Y 

Socioeconomic    Y    Y 

Observations 63948 63948 63948  50,672 50,672 50,672 

R-squared 0.638 0.639 0.641  0.660 0.660 0.587 

Standard errors are clustered by city. Standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1. Socioeconomic factors include GDP 

growth rate, GDP per capita, industrial production, population, energy consumption and vehicle number by city and year, as well as the 

dummy for regular heating season. Weather variables include rainfall, temperature, barometric pressure, sunshine, humidity (if rainfall is 

zero), wind velocity, and four dummies for wind direction (east, south, west, and north).
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8. Conclusion  
Overall, this paper focuses on two regulatory measures that China has 

adopted to incentivize air quality improvement: publishing daily API for major 

cities since 2000 and linking the count of blue sky days (𝐴𝑃𝐼 ≤ 100) to the 

evaluation of the model city award. Using daily API, visibility, and the AOD data 

from 37 large cities during 2000-2009, we show that the officially reported API 

has a significant discontinuity at the blue sky threshold. This discontinuity cannot 

be fully explained by the piece-wise definition of the API and is more pronounced 

after the introduction of the blue sky target in model city evaluation. These 

patterns suggest data manipulation around the blue sky threshold. 

That being said, we also find significant correlation of the API and two 

alternative measures of air quality (visibility and the AOD), and such correlations 

do not change significantly when the API is closely below or above 100. These 

findings suggest that although count of blue sky days may be subject to data 

manipulation, the reported API does contain useful information for cross-city and 

cross-time variations of air pollution. 

 Evidence regarding the effect of the model city award is less clear. On the 

one hand, reported API (and inferred PM10) around the blue sky threshold tends to 

be more sensitive to the pressure of reaching the targeted blue sky days when a 

city was winning the award, and this sensitivity declines after the city won the 

award. This is consistent with gaming around the threshold. On the other hand, 

based on all data, there is no statistically significant improvement in the API, 

inferred PM10, visibility, or the AOD immediately before or after a city won the 

model city award once we control for weather, city fixed effects, and date fixed 

effects.  

 How then can these mixed findings be explained? We offer several 

possible explanations. The first possibility is that the model city award does not 

generate any significant air quality improvement throughout the year but it 

generates incentives to game around the blue sky threshold when a city faces 

higher pressure to reach the target toward the end of a year. If we rank cities 

according to their average API in year 2001 only and then correlate this rank with 

the order of receiving the model city award, we find the spearman rank correlation 

to be 0.42 (significant at 99% confidence). This leads us to wonder whether the 

model city award was designed simply to recognize cross-sectional variation of 

air quality across cities rather than to encourage further environmental protection 

efforts within a city.  

 It is also possible that local cities adopt real measures to temporarily 

improve air quality around the threshold of blue sky days at the time of winning 

the model city award. However, the reported API is supposed to be an average 

across multiple stations and multiples times for a major pollutant on a city-day. It 
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is difficult to aim for a particular integer after such an arithmetic aggregation. 

Also, the translation from city-wide anti-pollution measures to pollutant density is 

noisy, not immediate, and difficult to predict beforehand. Some temporary 

improvements — for example, relocating a monitoring instrument to a cleaner 

area — are gaming, by our definition. 

 The third possibility is that gaming around the blue sky threshold is 

dominated by overall air quality changes before, during, and after a city wins the 

model city award. If every city improves in response to the model city policy 

regardless of its award-winning status, such improvement contributes to national 

variation. This could explain why we do not find any statistical improvement after 

controlling for date fixed effects nationwide. But this explanation is questionable 

if we consider how lax re-examination is after a city wins the model city award. 

Other facts to be considered are that air quality is only one of the many statistics 

used in model city evaluation and that model city evaluation is only one of the 

many tools that the central government may use to promote local government 

leaders. These considerations imply that cities could have improved air quality in 

response to other policies that provide stronger and more continuous incentives 

than the model city award. Identifying such policies is a potential direction for 

future research. 
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